Adaptation, management and use of warm-season turfgrasses

Dr Donald S. Loch
(University of Queensland & GeneGro Pty Ltd)

Despite the efforts of modern advertising...
- There is no such thing as a perfect turfgrass
 - And there never will be
- There is no one grass that is best for all uses in all situations and at all locations

Choosing a turfgrass
- Forget what is trendy
 - Put promotional “information” into perspective
- Look at the use required
- Choose the best adapted grass for that use under the climatic and soil conditions on your site

Management
- Choose a well adapted grass
 - Easier to manage
 - Cheaper to manage
 - Better turf quality (e.g. less weed invasion)
- Understand your plant and work with it
 - Science-based information (e.g. physiology, ecology, nutrition)
- Concentrate on overcoming weaknesses
 - Strengths take care of themselves

Marketing ‘information’
- “...sales information is what gets repeated over and over until it is accepted as fact - not always accurate”

The tropical challenge
- Most warm-season grass varieties from North America, etc., have not been developed for tropical conditions
 - Periods of heat, humidity, rain (irregular mowing), heavy cloud cover, low light, high pest & disease pressure
 - Monsoonal climates with 4-8 month dry season (need good drought tolerance or unlimited irrigation)
- Develop better adapted “local” varieties
 - E.g. most green-quality bermudagrasses from about 30° latitude
 - Novotek® developed in north Queensland tropics (17° latitude)
- Make greater use of Asian species and germplasm
Outline of presentation

- Summarise strengths & weaknesses of the major species
- Explore underlying factors leading to adaptation
 - Climate (temperature, drought, shade)
 - Soils (salinity)
 - Wear
- Introduce some minor species and their attributes
- Turf quality vs. sod price
- Quality assurance
 - An unnecessary expense or value for money?

Cynodon dactylon (bermudagrass)

- Most widely used warm-season turfgrass
- Strengths
 - Spreads rapidly by stolons and rhizomes
 - Good drought tolerance
 - Fair to good wear tolerance
 - Organocrescent herbicides used to control most other grasses
- Weaknesses
 - Few varieties adapted to tropical conditions
 - Poor shade tolerance
 - High N requirements
 - Varietal contamination (seed, vegetative survivors)
 - Organocrescent herbicides to be phased out in 2014

Cynodon dactylon X transvaalensis (hybrid bermudagrass)

- Medium- & fine-textured genotypes for fairways & greens
- Strengths
 - Sterile hybrids (do not set fertile seeds)
 - Greater shoot densities than C. dactylon
 - Can be mown shorter than C. dactylon
 - Finer textured turf than C. dactylon
- Weaknesses
 - Best adapted to warm temperate & subtropical conditions
 - Need intensive management
 - Genetically unstable (mixture of two different genomes)
 - Mutate vegetatively particularly when under stress
 - Finer stems do not mow as well as C. dactylon at higher levels

Paspalum vaginatum (seashore paspalum)

- Former “niche” species well promoted over past decade
- Strengths
 - Vibrant green colour (the “wow” factor)
 - High salinity & waterlogging tolerance
 - Possible to plant a single variety wall-to-wall
- Weaknesses
 - Expensive to manage in non-saline situations (competition)
 - Limited range of herbicides (none for grass control)
 - Poor shade & drought tolerance
 - Slow to recover from damage (scalping, drought thinning)
 - Higher N requirements than promoted
 - Risk of varietal contamination from seed
 - Disease susceptibility (e.g., dollar spot under low fertility)

Drought, Weed invasion after drought, Scalping, Building
Digitaria didactyla (serangoon grass)
- **Strengths**
 - Medium-textured stoloniferous grass for low fertility sites
 - Similar to Queensland blue couch & Swazi grass (Australia)
- **Weaknesses**
 - Clippings stick together when mowing moist grass
 - Susceptible to Fe deficiency after heavy rainfall
 - Fair wear tolerance

Axonopus compressus (broadleaf carpetgrass)
- **Strengths**
 - Coarse-textured grass for shaded roughs, parks, etc
 - Tolerant of acid infertile soils
 - Blue-green colour
 - Originates from subtropical & temperate areas
- **Weaknesses**
 - Poor drought & wear tolerance
 - Lower thatch development than other turf grasses

Zoysia spp. (zoysiagrass)
- **Strengths**
 - Low maintenance grasses for fairways, tees & greens
 - Medium-textured, genotypes for fairways & roughs
 - Originates from subtropical & temperate areas
- **Weaknesses**
 - Slow growth (longer sod production cycle than for other species)
 - Resistant to wear

Zoysia japonica (Japanese lawngrass)
- **Strengths**
 - Low nutritional requirements
 - Less mowing than other grasses (slow growth)
 - Good drought tolerance
 - Few pests and diseases
 - Tolerant of a wide range of herbicides (several for grass control)
 - Good ball lie (shiny)
 - Highly resistant to wear
- **Weaknesses**
 - Slow growth (longer production cycle than for other species)
 - Resistant to wear

Weaknesses
- Susceptible to zoysia rust (Puccinia zoysiicola)
- Tolerant temporary but not permanent, waterlogging
Zoysia matrella (Manilagrass)

- Medium- & fine-textured genotypes for fairways & greens
 - More tropical in origin than *Z. japonica*

Strengths
- Bright green colour (varies with variety)
- High shade tolerance
- High salinity tolerance
- Tolerant of high strength soils
- Not affected by zoysia rust (Puccinia zoysiae)

Weaknesses
- Thatch development
- Slower green speeds than bermudagrass
- Tolerates temporary, but not permanent, waterlogging

Temperature adaptation – *Cynodon* varieties

- Optimum temperature related to area of origin
- Stronger winter dormancy in genotypes from cooler areas
- Warm temperate (Melbourne – 13.4°C annual average)
 - Victorian > NSW & Queensland varieties (Redlands research)
- Subtropical (Brisbane – 20.5°C annual average)
 - Queensland & NSW > Victorian varieties (Redlands research plots)
 - Close to the warmer limit for *Cynodon* hybrid
- Tropical (Cairns – 24.8°C, Darwin – 28.1°C annual averages)
 - Also need tolerance of long periods of heavy cloud & low light
 - Very few well adapted *Cynodon* varieties
 - Local versions best (e.g. from ‘Greenlees Park’)

Disease susceptibility

- Disease tolerance related to area (climate) of origin
 - e.g. Bermudagrass accessions from dry (less humid) areas more susceptible to leaf diseases
 - e.g. *UQ Australia* (germplasm collection)
- Disease control
 - Adds to management costs
 - Compromises turf quality
- Greater emphasis on selecting new varieties for disease tolerance if available
Water use efficiency OR drought tolerance?

- **Water use efficiency**
 - Amount of water required to produce 1 unit of dry matter

- **Drought tolerance**
 - What happens in absence of rain & irrigation (survival and how well it survives)

- **Total irrigation** (e.g. desert conditions)
 - Water use efficiency
 - Small savings in water use are possible

- **Strategic irrigation** (e.g. irregular or seasonal rainfall)
 - Drought tolerance
 - Large savings in water use are possible by reducing frequency

Paspalum vaginatum

Cynodon dactylon

Depth of rooting

Physiological drought tolerance – Yi Zhou (UQ)

- Shade stress affects approx. 25% of turfgrass plantings
 - Trees & Buildings in the landscape
 - Sports stadiums
 - Cloudy or hazy conditions
Some “shady” facts

- Measure Photosynthetically Active Radiation (PAR)
 - 400-700 nm wavelength band
- 70% of daily radiation
 - 9:00am to 3:00pm (summer)
 - 10:00am to 2:00pm (winter)
 - Meeting light requirements for a turfgrass depends on when light is received, not just the fixed number of hours.
- Heavy dappled tree shade
 - c. 20-40% of full sunlight
- Building shade (e.g. elite sports stadiums)
 - c. 10% of full sunlight

Salinity growth response over time

- Two-stage process (Rana Munns, 1993)
 - physiological drought (osmotic effect) for first 4 wk
 - transition from physiological drought to toxic ion effects (4-6 wk after treatment)
 - toxic ion effects reduce DM production (6+ wk)
- Germination affected by physiological drought
- Perennial plant growth affected by both physiological drought and toxic ion effects over time

Screening perennial turfgrasses for salinity tolerance

- Three stages:
 1. establishment of vegetative material in pots (salt-free conditions)
 2. transition to salinity treatments (progressively add salt over 1-3 wk period)
 3. experimental measurements over a 12-wk period after reaching targeted salinity treatment levels
- Determination of salinity tolerance focused on 8-12 wk data
 - relative DM yield (linear regression to determine EC at 50% control DM yield)
 - % leaf firing
 - root biomass (12-wk)
Wear tolerance

- Two components of wear tolerance
 - Resistance to wear
 - Recovery from wear

- Fortnightly wear (home-and-away) less damaging than weekly wear in 3-yr simulated wear trial
 - e.g. apply 30 passes per week
 - or 60 passes per fortnight

Traffic simulator
- based on a standard US design
- two rubber-covered rollers rotating at different speeds
- causes scuffing of turf, minimal soil compaction

Factors & attributes contributing to wear tolerance

- Higher Total Cell Wall constituents
 - TCW = lignin + Acid Detergent Fibre (ADF)

- Higher turf density

- Tighter matting growth habit

- Age of turf
 - 2nd year “decliners” need regular aggressive rejuvenation
 - (e.g. elite stadiums)
 - 2nd year “improvers” should be left to mature
 - (e.g. community sports fields)

8 Cynodon cultivars showing wear effects

Factors & attributes contributing to wear tolerance

- Higher Total Cell Wall constituents
 - TCW = lignin + Acid Detergent Fibre (ADF)

- Higher turf density

- Tighter matting growth habit

- Age of turf
 - 2nd year “decliners” need regular aggressive rejuvenation
 - (e.g. elite stadiums)
 - 2nd year “improvers” should be left to mature
 - (e.g. community sports fields)
Primo® (trinexapac-ethyl)

- Used to condition turf
 - Improve turf quality by tightening up sward
 - Reduce mowing requirements
- Some varieties affected more than others

Legend®

- no Primo + Primo

Conquest®

- no Primo + Primo

Legend®

- no Primo + Primo

Conquest®

- no Primo + Primo

Primo® (trinexapac-ethyl)

- Used to condition turf
 - Improve turf quality by tightening up sward
 - Reduce mowing requirements
- Some varieties affected more than others
- Two-stage effect on growth
 - Initial reduction in growth rate
 - Followed by a surge of pent-up growth unless re-applied
- Wear damage may increase during growth reduction stage
 - Recovery from wear is restricted
- Restrict prolonged or continuous Primo use to low wear situations
Axonopus fissifolius, syn. A. affinis (narrowleaf carpetgrass)

- Coarse-textured stoloniferous grass for low quality fairways, sports fields, parks & lawns
- Not as coarse-textured as *Axonopus compressus*

Weaknesses
- Poor wear tolerance
- Moderate to poor shade tolerance
- Less tolerant of waterlogging than *Axonopus compressus*

Pennisetum clandestinum (kikuyugrass)

- Coarse-textured stoloniferous & rhizomatous grass for fairways, race tracks, sports fields, lawns in cool highland tropical areas
- Also warm temperate & cool subtropical (Australia, South Africa, etc)

Weaknesses
- Poor resistance to wear
- Poor shade tolerance
- High fertility requirement (N)
- Disease susceptible under hot, humid conditions

Paspalum notatum (bahiagrass)

- Tough coarse-textured grass with shortly creeping shallow rhizomes for roadsides, sports fields, etc in subtropics & tropics

Weaknesses
- Shallow surface rhizomes easily damaged by horses
- Existing development slow
- Susceptible to waterlogging
- Profuse production of 40-60 cm tall seed heads (requires frequent mowing)
Paspalum notatum

- Short bahiagrass for roadside & sports field use
- 20-30 cm high seed heads (cf. 40-60 cm for ‘Pensacola’, etc)

Paspalum nicorae

- Coarse-textured blue-green grass with deep shortly creeping rhizomes for roughs, roadsides, horse venues, etc

Strengths
- Deep rhizomes not damaged by horses (recovered quickly after use)
- Good drought tolerance
- Sown by seed
- Low to moderate fertility requirement (N)

Weaknesses
- Blue-green leaf colour (if dark green is desired)
- Seedling development slow
- Summer flowering long-day plant
- Production of 40-60 cm tall seed heads (reduced under lower fertility)

Turf quality vs. Sod price

- Price depends on
 - How fast production fields grow in
 - How often the fields can be harvested
 - Ease of management
 - Maintenance, etc.

- Quality depends on
 - Creating a tight mown surface

Stolon internode length

- Long for rapid growth
- Short for quality turf

Linear regression – Internode length vs. Lateral spread

\[
\begin{align*}
\text{Lateral spread (cm)} &= 2.35x + 0.737 \\
\text{(R}^2 &= 0.85) \\
\end{align*}
\]

Scatter diagram – Internode length vs. Branching

- Various genotypes
- Linear relationships
- Graphical representation
New cultivar ... like a 3-legged barstool?

- **Leg 1:** Breed the cultivar
 - The easy bit

- **Leg 2:** Keep the integrity of the cultivar over the long term
 - Don’t lose the gains made through breeding
 - Avoid contamination by other varieties

- **Leg 3:** Promote the cultivar effectively
 - Hollow advertising alone won’t work in the long term
 - Support with sound science-based technical information

Without all three “legs”?
- Instability and failure

Maintaining varietal integrity

- **Care and vigilance**
- Don’t multiply your mistakes
 - Maintain a pure Foundation block as a source of planting material for larger production fields
 - Don’t take planting material from larger production fields where the risk of contamination is greater

- Mow off seed heads within a week or so of emergence
 - Even 1% self-compatibility (e.g., Cynodon dactylon, Paspalum vaginatum) could lead to significant numbers of new genotypes establishing

- Spot-spray any contaminant plants found
 - Walk production fields regularly

Take home messages

- Consider the use required in relation to site characteristics
 - Climate, soils

- Choose the best adapted species and variety
 - Critically assess all information, including the accuracy of promotional material as it relates to your conditions
 - Ask searching questions

- Buy from a reputable source of clean planting material, not just seek the cheapest supplier

- Management of a well adapted grass will be easier & cheaper, and should result in better turf quality